skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morodo, Romain"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers, including polyesters and polycarbonates. We introduce o-phenylene bisurea (OPBU) (di)anions as a novel class of organocatalysts that are fast, easily tunable, mildly basic, and exceptionally selective. These catalysts surpass previous generations, such as thiourea, urea, and TBD, in selectivity (kp/ktr) by 8 to 120 times. OPBU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities (Đ ≈ 1.01). This performance nearly matches the ideal distribution expected from living polymerization (Poisson distribution). Density functional theory (DFT) calculations reveal that the catalysts stabilize the oxyanion transition state via a hydrogen bond pocket similar to the "oxyanion hole" in enzymatic catalysis. Both experimental and theoretical analyses highlight the critical role of the semi-rigid o-phenylene linker in creating a hydrogen bond pocket that is tight yet flexible enough to accommodate the oxyanion transition state effectively. These new insights have provided a new class of organic catalysts whose accessibility, moderate basicity, excellent solubility, and unparalleled selectivity and tunability open up new opportunities for controlled polymer synthesis. 
    more » « less
  2. Rowan, Stuart J (Ed.)
    Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersity (Đ = 1.01 – 1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly accelerated polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle x-ray scattering. 
    more » « less